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Abstract

We present an approach for learning spatial traversability maps for driving in complex, urban environments based on

an extensive dataset demonstrating the driving behaviour of human experts. The direct end-to-end mapping from raw

input data to cost bypasses the effort of manually designing parts of the pipeline, exploits a large number of data

samples, and can be framed additionally to refine handcrafted cost maps produced based on manual hand-engineered

features. To achieve this, we introduce a maximum-entropy-based, non-linear inverse reinforcement learning (IRL) frame-

work which exploits the capacity of fully convolutional neural networks (FCNs) to represent the cost model underlying

driving behaviours. The application of a high-capacity, deep, parametric approach successfully scales to more complex

environments and driving behaviours, while at deployment being run-time independent of training dataset size. After

benchmarking against state-of-the-art IRL approaches, we focus on demonstrating scalability and performance on an

ambitious dataset collected over the course of 1 year including more than 25,000 demonstration trajectories extracted

from over 120 km of urban driving. We evaluate the resulting cost representations by showing the advantages over a

carefully, manually designed cost map and furthermore demonstrate its robustness towards systematic errors by learning

accurate representations even in the presence of calibration perturbations. Importantly, we demonstrate that a manually

designed cost map can be refined to more accurately handle corner cases that are scarcely seen in the environment, such

as stairs, slopes and underpasses, by further incorporating human priors into the training framework.
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1. Introduction

A mission-critical capability for an autonomous vehicle is

determining the traversability of its surroundings and com-

puting a safe trajectory to its goal. Typically, this is per-

formed by exploiting manually designed cost functions,

which specify the cost of visiting each location or state

as a function of sensory input data. However, the mapping

between sensor input and cost is likely to be very complex.

In particular, in environments containing a wide variety of

obstacles, such as stairs, bollards, underpasses, or slopes,

the cost of traversing a particular location is a complex

function of the sensor data, and is additionally dependent

on features in the spatial neighbourhood, rather than just the

location itself. Consequently, the manual handcrafting of

cost functions for motion planning is a difficult and labori-

ous task, requiring expertise in robotics, sensing and motion

planning.

Learning from demonstration (LfD), also known as pro-

gramming by demonstration, is intended to render the task

of specifying robot behaviour independent of knowledge

in robotics and applied algorithms. The approach is often

employed to enable untrained personnel to train and adapt

machines to solve tasks via imitation.

The inverse reinforcement learning (IRL) framework

enables this paradigm and centers on learning the underly-

ing reward or cost structure from demonstrations of human

behaviour (Ziebart et al., 2008). It has been applied to

a wide range of domains, including autonomous driving

(Wulfmeier et al., 2016a), robotic manipulation (Finn et al.,

2016) and grid-world planning (Nguyen et al., 2015). In

principle, IRL eliminates the expertise and effort required

to manually design cost functions, and can produce cost

maps that are more consistent with human behaviour. How-

ever, the original IRL framework utilises a linear mapping
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Fig. 1. Coloured 3D LIDAR environment scan.

Fig. 2. Schema for training neural networks in the maximum

entropy paradigm for IRL.

between input features and output reward, which severely

restricts the complexity of cost structures that can be mod-

elled accurately. Other state-of-the-art methods that have

the required capacity are built upon non-parametric models

such as Gaussian processes (GPs), which have a runtime

dependent on the size of the dataset and are quickly ren-

dered intractable for large amounts of demonstration data

(Levine et al., 2011; Ramachandran and Amir, 2007).

In recent years, the enormous expressive capacity of deep

neural networks has led to state-of-the-art performance in

numerous applications and tasks (Liu et al., 2015; Long

et al., 2015; Sermanet et al., 2010). We posit that as robust,

flexible function approximators they are well-suited to an

IRL framework. In particular, they have the capacity to

model the complex relationship between sensory input and

reward structure, are able to capture spatial correlations

in the data using convolutional layers and exhibit con-

stant time operation, allowing them to scale to very large

datasets.

Our recent work explores the use of fully convolutional

neural networks (FCNs) to model the reward structure for a

synthetic dataset (Wulfmeier et al., 2015), and for a real-

world application to LIDAR data from a mobile vehicle

(Wulfmeier et al., 2016a). The work demonstrated the abil-

ity of CNNs to accurately infer the underlying reward struc-

ture from human driving demonstrations, leading to con-

trol policies that more closely mimicked the behaviour of

a human driver. This was further extended in Wulfmeier

et al. (2016b) with an additional pretraining stage to fur-

ther improve the overall accuracy of the model and its per-

formance on corner cases, such as planning near slopes,

bollards and stairs. This journal article presents a coher-

ent framework for large-scale, non-linear IRL which uni-

fies and extends our prior work by including more detailed

evaluation and discussion.

The principal contributions of our work are as follows.

• Development of Maximum Entropy Deep Inverse Rein-

forcement Learning (MEDIRL), a framework for apply-

ing high-capacity neural network architectures to solve

the IRL problem. This extends scalability with respect

to complexity of environment, behaviour and size of

training datasets.

• Qualitative and quantitative evaluation of the approach

on small-scale scenarios against state-of-the-art

approaches in IRL. We experimentally validate the

convergence of task-optimal spatial features through

IRL-based training given enough demonstration

samples on common benchmark scenarios.

• Evaluation of scalability and efficacy in real-world

tasks on an extensive dataset of over 120 km capturing

the common driving behaviour of 13 different human

drivers, resulting in over 25,000 training samples.

• Demonstration of robustness towards systematic noise

in form of miscalibration of the sensor setup and

demonstrating significantly stronger performance for

prediction of human trajectories and classification of

traversable terrain.

• Refining human prior cost maps to address additional

complexities of real-world sensor data and sparse feed-

back from IRL to combine benefits of human intuition

with large-scale demonstration datasets.

2. Related work

Manual cost function design builds a foundation for the

majority of state-of-the-art motion planning systems for

autonomous driving (e.g. Choset, 2005), with recent suc-

cessful examples given by the competing teams in the

DARPA Grand (Thrun et al., 2006) and Urban Challenges

(Montemerlo et al., 2008; Urmson et al., 2009). Obstacles

have to be explicitly identified and are typically inflated as

a function of the vehicle size. The necessary weighting of

costs from different sensing modalities and the adaptation

for different driving behaviours relies on detailed domain

knowledge. In addition, the task of extracting good features

from raw input data for computing the cost maps is often

non-trivial and relies heavily on a well-calibrated hardware

setup.

Manually designing these cost functions can prove chal-

lenging and time demanding, and limits the task to highly

specialised personnel. In order to deploy autonomous

mobile vehicles in new locations and open the task to

untrained personnel, LfD approaches represent a promising
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alternative and have led to recent advances in principally

two different areas, direct policy imitation and IRL. Policy

imitation, also commonly known as behavioural cloning,

targets directly learning the policy mapping from perceived

environment or preprocessed features to the agent’s actions,

while IRL in contrast focuses on inferring the agent’s under-

lying reward structure: the preferences that cause specific

behaviours. While we mention a select number of relevant

works here, the interested reader is referred to Argall et al.

(2009) for a detailed summary.

Early work to directly model driving behaviour with neu-

ral networks (Pomerleau, 1990) focused on learning a dis-

cretised steering output based on downsampled front-facing

image streams and fully connected layers in the neural

network. This approach was extended in recent work via

the application of convolutional neural networks (CNNs)

(Chen et al., 2015; Sermanet et al., 2010) and scaled sig-

nificantly with respect to dataset size, task complexity and

performance.

While direct policy imitation is well suited for the

design of reactive controllers, long-term decision-making

systems need to plan further ahead when aiming to find a

safe, collision-free path in possibly cluttered terrains. The

described principal challenge for policy LfD lies in gener-

alisation as policies are learned along trajectories and devi-

ations from those introduce large errors. Ross et al. (2010)

address this problem by querying an expert to improve the

policy for states not encountered in the original trajecto-

ries but this requires continuous human supervision and

monitoring.

Furthermore, especially in safety critical situations,

where future behaviour has to be tested against specific con-

straints, the capacity to generate long-term plans rather than

instantaneous reactions is necessary to ensure robust and

safe interaction with the environment. A reward model is

generally seen to be more succinct than the policy and con-

ceived to be preferable as generalisation becomes important

(Abbeel and Ng, 2004; Abbeel et al., 2008). While a policy

is directed towards solving a specific task, a cost-function-

based approach can more easily be extended by switching

the goal and deriving a new policy for the setting.

Owing to its strengths in planning tasks and the capa-

bility for integration into existing systems, recent work

successfully applies IRL to planning (Ratliff et al., 2009).

Further applications include improving driving and robotic

navigation with focus on interaction of mobile autonomous

platforms and humans (Kuderer et al. 2015; Kretzschmar

et al. 2016; Pfeiffer et al. 2016). These works addition-

ally target the modelling of the behaviour of other partic-

ipants, which represents another principal application for

IRL approaches.

Early work in IRL started off with linear parametrisation

of the reward function based on manually pre-determined

features (Abbeel and Ng, 2004; Lopes et al., 2009; Ratliff

et al., 2006; Ziebart et al., 2008). In order to overcome the

inherent limitations of linear models, following approaches

extended this approach to a limited set of non-linear rewards

and learning to build composites of logical conjunctions for

atomic features (Choi and Kim, 2013; Levine et al., 2010).

More flexible non-linear function approximators such as

GPs further extend the modelling capacity of IRL models

(Levine et al., 2011). However, the application of a non-

parametric approach causes the approach to scale poorly

with the numbers of demonstration samples, quickly render-

ing the GP framework impractical due to the unfavourable

computational complexity. Even sparse GP approximations

lead to training computation complexity that is dependent

on the size of the active set and the number of encoun-

tered samples (O( n × m2) where n denotes the number of

experienced state–reward pairs and m the number of induc-

ing points). Therefore, situations with increasingly com-

plex reward functions, behaviours or environments that lead

to higher requirements regarding the number of inducing

points will render a non-parametric approach impracticable.

To address these challenges while maintaining the accu-

racy of high capacity, non-linear function approximation,

we introduce deep parametric models, in particular FCNs,

and develop a framework based on maximum entropy

(MaxEnt) IRL (Ziebart et al., 2008), an approach that

constrains the distribution of demonstration trajectories to

the one of highest possible entropy. The resulting objec-

tive function is differentiable with respect to the network

weights based on feature matching (Abbeel and Ng, 2004)

and backpropagation as illustrated in detail in Section 3.3.

The approach enables the application of arbitrary neural

network architectures in the context of IRL. Recent success-

ful examples for the application of FCNs can be found in

pixel-wise semantic segmentation (Long et al., 2015), slid-

ing window detection and prediction of object boundaries

(Sermanet et al., 2013) and depth estimation with single

monocular images (Liu et al., 2015) .

In parallel, Finn et al. (2016) developed a sampling-

based approach to IRL for training neural networks with

only fully connected layers in a MaxEnt-IRL-based frame-

work for robotic manipulation and navigation tasks. The

cost mapping is determined from crafted feature represen-

tations that are parametrised based on the trajectory rep-

resentation. The approach requires sampling of real-world

training data during the training process to approximate

the complex dynamic model. In contrast, our work focuses

on employing fully convolutional networks in large-scale

motion planning problems such as autonomous driving, and

does not require run-time sampling. Being model-based,

our proposed method removes the requirement of sampling

on the actual platform resulting in increased safety and

streamlining of the training procedure.

3. Problem formulation

When employing an autonomous vehicle in a new envi-

ronment, it is pivotal to incorporate knowledge about ter-

rain traversability into the system. While it is possible to
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describe generally reasonable cost functions to capture the

terrain constraints, it is very difficult and time consuming to

consider all possible corner cases. In the following section,

we present an approach to automatically learn these cost

functions for large datasets of demonstration trajectories in

the context of autonomous driving.

3.1. IRL

To overcome the limitations of manual handcrafting of cost

functions, we frame the aforementioned task in the con-

text of IRL, which has the principal goal of inferring the

preferences or the reward structure that underlies specific

behaviours. ‘Reward’ and ‘cost’ will be used interchange-

ably in the following sections as one is the straightforward

negation of the other.

The approach is commonly formulated using the Markov

decision process framework M = {S,A, T , γ , r}, where

S denotes the state space, A denotes the set of possible

actions, T is the state transition model, γ is a discount fac-

tor that modulates the influence of future rewards and r :

S×A → R is a function specifying the reward structure. As

r is not provided, it must be inferred from a set of demon-

strations D = {ς1, ς2, . . . , ςN }, each of which is a sequence

of state–action pairs ςi = {(s1, a1) , (s2, a2) , . . . , (sK , aK) }

representing a sample trajectory.

3.2. MaxEnt IRL

When solving the IRL problem, one inherently needs to

address two main challenges: suboptimality of demonstra-

tion trajectories given the underlying reward, as no human

expert will ever act completely optimally; and reward ambi-

guity, as multiple rewards can explain the same behaviour.

The MaxEnt approach addresses these challenges by

modelling expert behaviour as a distribution over trajecto-

ries and constraining this distribution to the one of highest

entropy (Ziebart et al., 2008). It defines the demonstrator’s

underlying policy πD(a|s) such that the probability for user

preference of any given trajectory between specified start

and goal states is proportional to the exponential of the

reward along the path:

P(ς | r) =

K
∏

i=1

πD(ai | si) ∝ exp

{
K

∑

i=1

rsi,ai

}

(1)

with trajectory length K. This approach results in the least

biased estimate given the demonstration trajectories (Zhifei

and Joo, 2012).

3.3. MEDIRL

In the original MaxEnt IRL formulation (Ziebart et al.,

2008) the reward r was defined as a linear function of input

features f, i.e. r = θT f. The features in this context are

the observations at a given state f (s) such that the reward

is parametrised on sensor observations rather than absolute

state, which supports generalisation and enables application

in large state spaces.

The application of a linear model relies on the ability

to extract meaningful features in the data, and restricts the

complexity of the mapping from input to reward that can

be learned. Instead this approach moves all complexity into

the manual design of optimal features.

In this work, we instead propose MEDIRL which

employs FCNs to model the reward structure directly as a

non-linear function of the inputs. Neural networks are flex-

ible, powerful, function approximators, which makes them

ideal for this task of predicting the reward structure for a

given sensor input. By utilising convolutional layers for this

task, we eliminate the need to handcraft spatial feature map-

pings from raw data input, which instead can be learned to

be optimal for the respective task.

The network is trained to maximise the joint probability

of the demonstration data and model parameters under the

predicted reward:

L(θ ) = log P(D, θ | r(θ )) (2)

= log P(D | r(θ ))
︸ ︷︷ ︸

LD

+ log P(θ)
︸ ︷︷ ︸

Lθ

where the loss function can be split into the log-likelihood

of the demonstration data LD, and a regularisation term

denoting the log probability of the network parameters Lθ .

Here, we will focus on the data likelihood since param-

eter regularisation terms can build on various, common

approaches such as L1-norm and L2-norm or dropout

(Hinton et al., 2012).

The data likelihood term relates to differences in feature

counts
(

fD − E[f]
)

(Abbeel and Ng, 2004). In the original

MaxEnt formulation (Ziebart et al., 2008), this is specified

as a linear model, with the differences in state visitation

frequencies (µD − E[µ]) multiplied by a matrix Fs, as in

Equation (5). Here, µD refers to the mean state visitation

frequencies according to the demonstration trajectories, and

E[µ] is the expected state visitation frequencies under the

policy. Thus, both feature and state visitation difference

terms in this context express how much the behaviour of

the learned model differs from the behaviour underlying the

demonstration trajectories:

∂LD

∂θ
=

∂LD

∂r

∂r

∂θ
(3)

= fD − E[f] (4)

Linear MaxEnt IRL

= (µD − E[µ]) Fs (5)

MEDIRL

= (µD − E[µ])
︸ ︷︷ ︸

State Visitation Matching

∂r(θ )/∂θ
︸ ︷︷ ︸

Backpropagation

. (6)

By extending the original linear formulation to neural net-

works, we benefit from the efficiency of gradient backprop-

agation, expressed in the second term in Equation (6), to
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Algorithm 1 MEDIRL

Input: µa
D, f,S,A, T , γ , α

Output: network parameters θ∗

1: for n = 1 : N do

2: rn = r( f, θn)

planning step

3: πn = approx_value_iteration(rn,S,A, T , γ )

4: E[µn] = propagate_policy(πn,S,A, T)

determine objective

5: Ln
D = log(πn) ×µa

D

6:
∂Ln

D
∂rn = µD − E[µn]

parameter update

7:
∂Ln

D
∂θn =

∂Ln
D

∂rn
∂rn

∂θn

8: θn+1 = θn + α
∂Ln

D
∂θn

9: end for

Algorithm 2 Approximate Value Iteration

Input: rn,S,A, T , γ

Output: πn

1: V (s) = −∞

2: repeat

3: Vt(s) = V (s) ; V (sgoal) = 0

4: Q(s, a) = r(s, a) +ET(s,a,s′)[V (s′) ]

5: V (s) = softmaxa Qi(s, a)

6: until maxs(V (s) −Vt(s) ) < ε

7: πn(a|s) = eQ(s,a)−V (s)

find the non-linear mapping from the difference in state

visitation frequencies µ to the necessary updates for all

relevant parameters.

Algorithm 1 illustrates the steps for iteratively refining

cost functions in the MEDIRL framework to maximise the

probability of expert demonstration trajectories. In each

step the current cost function is evaluated based on input

observations f and the current parameters θn. Given the cur-

rent cost function, lines 3 and 4 determine the state visiting

frequencies based on Equation (1). Algorithm 2 describes a

common method for computing approximate value iteration

and determines the policy based on the current approxima-

tion of the reward and the transition model. Lines 5 and 6

subsequently compute the current objective and the gradient

with respect to the reward, leading to the network parameter

update in lines 7 and 8.

3.4. Architectures

A first comparison based on toy scenarios in Section 4.1

applies only simple, relatively shallow networks as they suf-

fice for the task at hand. Furthermore, we evaluate three

more advanced architectures with varying properties for the

application of cost function learning for motion planning on

a large-scale real-world dataset.

In addition to a standard, serial FCN, we introduce

two variations to overcome the shortcomings of this basic

implementation. We argue that the exact position of a fea-

ture is often less relevant than its general presence, as, for

example, any obstacle will influence a larger surrounding

group of states in the context of motion planning cost func-

tions. In classification tasks this notion of limited transla-

tional invariance is commonly addressed via a max-pooling

layer, leading to the implementation of the pooling FCN.

This approach eliminates the need to learn specific filter

kernels for all positions of relevant features and reduces

the chance of overfitting as opposed to increasing the net-

work capacity to learn all otherwise necessary filters. This

property is particularly important for the following large-

scale evaluation in Section 4.2 where, due to the sparsity of

the LIDAR pointcloud depending on distance from the car,

the feature representation for objects differs depending on

where they are located. The approach reduces the need to

learn all resulting feature patterns in this context.

While the pooling-based architecture leads to increased

spatial invariance with the advantages mentioned earlier in

this section, this also leads to the irreversible loss of loca-

tion information for low-level features. In order to combine

the benefits while maintaining the networks ability to utilise

exact location information when needed, we introduce the

multi-scale (MS) FCN architecture shown in Figure 3 that is

related to the multi-scale deep jet architecture (Long et al.,

2015) which integrates features of different scales for image

segmentation. The proposed MS FCN architecture is able to

treat the feature channels separate by concatenation instead

of summation, similar to Szegedy et al. (2015). In con-

trast to the deep jet architecture, where feature channels

from parallel branches share the same semantic meaning,

we intend to learn independent filter kernels representing

different factors of influence for our cost maps.

Furthermore, a benefit of keeping all architectures fully

convolutional is that we can design the size of the receptive

field for each location in the final cost map to ensure cover-

age for an area encapsulating the size of the vehicle and all

factors that might influence driving behaviour according to

human intuition.

4. Evaluation

4.1. Standard benchmarks

We benchmark the approach on commonly used small-scale

toy scenarios for a proof of concept and a first quantita-

tive evaluation against current state-of-the-art approaches:

GPIRL (Levine et al., 2011), NPB-FIRL Choi and Kim

(2013) and the original MaxEnt (Ziebart et al., 2008). Fur-

thermore, we demonstrate that the application of convo-

lutional layers can remove the dependency on separately

defined spatial features. All experiments are performed in

this scenario based on a small number of demonstration

trajectories, typically less than 100. While the number of
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Fig. 3. Illustration of the three proposed network architectures.

The standard FCN represent a serial architecture of convolutional

layers. The pooling FCN adds limited translational invariance to

the standard architecture. To combine the capacity for transla-

tionally variant and invariant features, the multi-scale network

combines two parallel branches with and without max-pooling

layer.

samples obviously does not represent a principal applica-

tion of deep architectures, it serves to show the ability

of our approach to approximate arbitrary non-linear cost

functions.

As these benchmarks focus on low-complexity reward

functions and very limited demonstration datasets, we

employ comparably shallow networks based on two hidden

layers and rectified linear units. To enable direct compari-

son against the other approaches, we limit the network to

approximate the reward for a state only on the correspond-

ing feature representation of that particular state, which

corresponds to a FCN limited to filter widths of 1 × 1. This

limitation is removed in Section 4.1.1 as the analysis tar-

gets the ability of the algorithm to learn spatial features

and eliminate the dependency on predetermining useful

representations. The implementation of the experiments is

based on MatConvNet (Vedaldi and Lenc, 2014) applying

AdaGrad (Duchi et al., 2011) for network training.

Since the ground truth reward is given in these sce-

narios, we use expected value difference as the principal

metric of evaluation. It represents a measure for the sub-

optimality of the optimal policy for the learned reward

function under the true reward. The analysis focuses on

evaluating each specific training scenario and a num-

ber of randomly generated test environments. The trans-

fer examples serve to analyse each algorithm’s abil-

ity to generalise to the true reward structure and resist

over-fitting.

Both evaluation scenarios, Objectworld and Binaryworld,

consist of a map of M × M states for M = 32, where

possible actions include motions in all four directions as

Ground truth DeepIRL

GPIRL MaxEnt

Fig. 4. Reward reconstruction sample in the Objectworld bench-

mark provided N = 64 examples and C = 2 colours with

continuous features. White, high reward; black, low reward.

well as staying in place. In addition, two different sets of

feature representations are used to evaluate the algorithms

for discrete and continuous representations. For the contin-

uous features x ∈ R
C . each feature dimension describes

the minimum distance to an object of one of C colours.

Building on the continuous representation the discrete ones

includes C×M binary features, where each dimension indi-

cates whether an object of a given colour is closer than

the threshold d ∈ {1, . . . , M}. The ground truth reward in

Objectworld depends on a two-step decision tree based on

the value range of the available features, while Binaryworld

is built on a more complex model which is based on count-

ing the number of active features in the direct environment

of a state. For a more detailed description of the scenarios

and ground truth reward calculation, the reader is referred

to Wulfmeier et al. (2015).

The algorithms are assessed with increasing number of

demonstration samples on the training and test scenarios.

While the original MaxEnt is inherently unable to capture

the non-linear reward structure independent of the num-

ber of demonstration samples, both DeepIRL and GPIRL

converge towards exact approximation as represented in

Figure 4. NPB-FIRL was shown to perform on a similar

level as GPIRL by Choi and Kim (2013). DeepIRL achieves

performance commensurate to GPIRL with slight increase

in the number of available expert demonstrations. The same

behaviour is exhibited for both continuous and discrete

feature representations (Figure 5).

The Binaryworld scenario differs to Objectworld in its

feature representation as every state is randomly assigned
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Fig. 5. Objectworld benchmark. From top left to bottom right:

expected value difference (EVD) with C = 2 colours and vary-

ing number of demonstrations N for training (a) and transfer

case (b) with continuous and respectively with discrete features in

(c) and (d). As the number of demonstrations grows DeepIRL is

able to quickly match performance of GPIRL on the task.

one of two colours and the feature vector for each state con-

sequently consists of a binary vector of length 9, encoding

the colour of each cell in its 3 × 3 neighbourhood. Since

the reward depends on a more complex combination of the

basic features - that is to say the number of specific features

- this case is applied to represent a more complex non-linear

function.

The performance of DeepIRL compared to GPIRL, linear

MaxEnt and NPB-FIRL is depicted in Fig. 6. In this sce-

nario, DeepIRL is able to learn the higher-order dependen-

cies between features more quickly, whereas GPIRL needs

a higher number of samples as the inherent kernel measure

struggles to relate the reward of different examples with

similarity in their state features. The NPB-FIRL algorithm

struggles significantly in this test, which can be explained

by the fact that describing the true reward in this scenario

with the logical conjunctions is quite inefficient. In fact, it

would require 29 different logical conjunctions, each cap-

turing all possible combinations of features, to accurately

model the reward in this framework.

One of the principal advantages of DeepIRL is its scal-

ability with respect to the amount of training data, lead-

ing to an algorithm with constant-time execution at test

time. The partial requirement of DeepIRL for more training

will be rendered unimportant in robot applications based

Fig. 6. Value differences observed in the Binaryworld benchmark

for GPIRL, MaxEnt and DeepIRL for the training scenario (left)

and the transfer task (right).

on low-cost, autonomous data acquisition, rendering repre-

sentation learning and the aforementioned lower algorith-

mic complexity as the dominant advantage of a parametric

approach.

4.1.1. Spatial Feature Learning. One principal advantage

of being able to access the full gamut of different neural

network architectures is the possibility to extend the model

via the use of wider filters to eliminate the requirement of

manual design of input features.

We demonstrate the capability of our method to learn

optimal spatial features from the raw input representation.

Figure 7 represents the results for both toy scenarios, but

instead of using the earlier described handcrafted feature

representations the input representation for our models only

includes the presence of any object at every state. All spatial

information has to be derived based on the convolutional fil-

ters in this context. We employed a five-layer approach with

3 × 3 convolutional kernels in the first two layers, followed

by 1 × 1 width layers. By increasing the depth of the net-

work and including wider convolutional filters, we add the

capacity to the network to learn the hierarchy of features

including their spatial interaction as optimised for the task

at hand.

Owing to the increasing number of parameters, the

approach requires additional training data to overcome

overfitting and generalise similarly well. By increasing

the number of demonstration samples it converges quickly

towards the performance with predefined features and

ultimately converges towards the exact reward function.

In these simplified toy problems the earlier used hand-

crafted features are optimal and the true reward is directly

calculated on their basis. Therefore, automatically learned

features cannot exceed their performance. However, in real-

world scenarios, the compression of raw data, such as

images, to feature representations inherently leads to loss

of information and the learning of features that optimise

the utilisation of capacity with respect to the task represents

a principal gain of the approach.

The test scenarios above demonstrate the feasibility of

the approach on small-scale benchmarks and spatial feature
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Fig. 7. Application of convolutional layers for spatial feature

learning. Spatial feature learning quickly converges to perfor-

mance with optimally designed features.

learning with CNNs but only represent a limited evaluation.

The cost functions in this context are based on handcrafted

decision trees with algorithmically determined demonstra-

tion behaviours. In the following section, our method is

applied in a real-world scenario to learn cost functions for

motion planning for an autonomous vehicle in an urban

environment.

4.2. Large-scale application

After demonstrating the capability of our model in simple,

commonly used benchmarks, this section aims at evaluat-

ing its real-world applicability in the context of autonomous

driving: as a regressor for cost functions used in motion

planning.

4.2.1. Dataset. The driving dataset was collected over the

course of 1 year involving 13 different drivers navigating

pedestrian walkways and cycle lanes in the city of Milton

Keynes, UK.

The data collection platform, a modified GEM (Global

Electric Motorcars) golf cart (cf. Figure 8), is equipped

with various sensors including 2D as well as 3D LIDARs

and stereo- and mono-cameras. The relevant sensors for

this work are two Velodyne HDL-32E scanners and a

Bumblebee XB3 stereo-camera.

A total of over 25,000 trajectories are included for the

dataset, each about 12–15 m long, from more than 120

km of urban driving. Each trajectory represents a single

training input sample based on a ground-plane projection

of statistics of the LIDAR data as represented in Figure 9.

The trajectories were extracted with about 50–60% overlap

which was empirically determined as compromise between

final model performance and training time. The impact of

higher overlap and therefore more samples from the same

length of demonstration data on the model performance was

found to be insignificant.

The network input is based on pointclouds measured by

the two 3D Velodyne scanners. The pointclouds are first

Fig. 8. Mobile research platform: a modified GEM golf cart.

mapped into a grid-based static map on the ground plane

of the vehicle and consecutively compressed into statistics,

which include mean height, height variance and a binary

indicator if the cell is visible in any scan. The grid has a size

of 25 m×25 m and a resolution of 0.25 m per cell. Based on

this discretised, gridded representation, the application of

FCNs to the environment representation is straightforward.

An example of the gathered demonstration trajectories is

depicted in Figure 9. The trajectories are extracted from the

chain of vehicle poses estimated by applying visual odom-

etry (Churchill and Newman, 2012) on stereo images from

the Bumblebee XB3 camera. The extracted transform chain

is mapped into the static map frame and discretised to fit

into the grid representation. The action space is simplified

to a discrete set of motions around the current position.

Only spatial aspects of the trajectories are being considered

for this model. An expansion towards temporal aspects is

discussed in Section 5.

In the following sections, we evaluate the different

models against a handcrafted cost function (displayed in

Figure 10). The main concept behind the design of this

cost function is the detection of obstacles as areas of large

height variance in each cell. Areas without LIDAR infor-

mation are labelled as unknown, which in the classification

task is treated as not traversable. Furthermore, obstacles are

extended by the radius of the smallest circle encapsulating

the GEM platform (Minkowski sum (LaValle, 2006)).

4.2.2. Prediction and classification. The model quality is

evaluated based on the performance in two tasks, prediction

of human behaviour and classification of traversable terrain.

Taking into account that the goal of this work lies in the use

as cost map for motion planning, the evaluation focuses on

qualitatively and quantitatively determining the accuracy of

terrain assessment.

For prediction accuracy, we apply two common met-

rics: the negative log-likelihood of the demonstration data

(NLL) as well as the modified Hausdorff distance (MHD)

(Kitani et al., 2012). The first metric represents how likely
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Fig. 9. Visualisation of demonstration trajectories (in red) on all channels of a static map. From left to right: mean height, height

variance, cell visibility.

Fig. 10. Handcrafted cost function (our baseline for comparison)

for the same scenario shown in Figure 9.

the expert demonstrations are given the current cost func-

tion and the latter is a spatial metric for how close the

demonstrations are to samples generated from the stochas-

tic policy in dependence of the cost map. In other words,

this describes the similarity between agent and demonstra-

tion trajectories: the accuracy in imitating human driving

behaviour.

The standard FCN already predicts test trajectories

significantly better than the manual cost function (see

Table 1) and therefore describes human driving behaviour

more accurately. This result is expected as the training

objective in MEDIRL (2) includes optimising the NLL of

demonstration trajectories. The use of the pooling archi-

tecture without parallel information branches performs bet-

ter in terms of a smooth cost function when interpreting

the same areas as displayed in Figure 11. The MaxPooling

approach is able to infer traversable terrain. However, the

pooling step leads to a loss of spatial information as dis-

cussed in Section 3.4. Best performance is achieved when

the model is given the capability to learn spatial invariance

in one branch while being able to preserve feature location

in a parallel chain of the MS-FCN architecture.

Table 1. Model performance on calibrated data.

Metric NLL MHD FNR FPR

Manual CF 78.13 0.284 0.441 0.000

Standard FCN 69.35 0.221 0.471 0.000

Pooling FCN 69.73 0.230 1.000 0.000

MS FCN 65.39 0.200 0.206 0.000

One major drawback for evaluating all approaches in a

real-world driving setup is the absence of absolute ground

truth for the cost map. However, the driven trajectories rep-

resent ground truth knowledge about traversable terrain and

the annotation of synthetic collision trajectories is less time

consuming than full manual annotation of cost maps. For

this purpose, we manually annotate synthetic collision tra-

jectories of the same number as positive samples in our clas-

sification test dataset based on pointcloud and image data,

as actual collision trajectories are to be prevented. There-

fore, we can overcome the impediment, evaluate our cost

functions as classifiers for feasible trajectories and analyse

the approaches in Type I (false positives) and Type II errors

(false negatives).

In this classification setup, we need to set a threshold for

deciding the minimal cost at which collisions occur and the

trajectory can be classified as untraversable. This threshold

is set to reduce FPR to 0%, meaning that no untraversable

terrain in our test set is incorrectly classified as acceptable

trajectory and planning safety is maximised.

The manual cost function has no threshold to set but is

designed instead to be strictly conservative with respect to

the traversability of terrain. This results in 0% false-positive

rate (FPR) while showing a significant number of false

negatives. While the system is tuned to produce no clas-

sification that could result in a collision, it often wrongfully

rejects paths as not feasible.

Adapting the cost function thresholds to achieve 0% FPR

requires elaborate tuning. While it is straightforward to

achieve rates of under 5% the final adjustment to erase

false positives significantly increases the false negative rate.

While it leads to 47% false-negative rate (FNR) for the stan-

dard architecture, it renders the application of the pooling

model infeasible as FNR of 100% represents that none of
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Fig. 11. Visualisation of the learned cost maps based on (a) standard FCN, (b) pooling FCN and (c) MS FCN.

the paths are classified as traversable. The MS FCN, being

able to combine the benefits of spatially variant and invari-

ant features (see Section 3.4), performs best with a reduc-

tion in FNR of about 50% in comparison with the manual

cost map.

4.2.3. Robustness to systematic noise. A principal gain in

learning the cost function from raw features is the signifi-

cant increase in robustness towards systematic flaws in the

configuration of the robot. An inaccurate calibration for

example will lead to complete failure for a manually crafted

cost function. As presented in the example in Figure 12, it

can result in artificial obstacles due to an imprecise calibra-

tion of the pitch angle between the platform and one of the

LIDARs of as little as 1◦. Owing to the introduced pertur-

bation in the pitch angle of the right Velodyne, the manually

defined cost map creates obstacles in this instance. This

is caused by the increased height variance of points in a

specific cell which now directly depends on a cell’s dis-

tance from the vehicle. The learned cost map is able to

handle the bias and infer realistic cost maps even in the

presence of miscalibration. As long as the input representa-

tion is rich enough to theoretically distinguish between the

new features, describing artificial obstacles in the manual

cost map, and real walls, etc. the system learns to approxi-

mate the decision boundary that separates traversable from

untraversable terrain.

By applying the metrics introduced in Section 4.2.2,

we evaluate the performance of the MS FCN architecture

versus the manually defined cost function. The evaluation

shown in Table 2 emphasises that the handcrafted cost func-

tion leads to nearly impassable cost maps in this scenario

with an FNR of more than 97%. The learned model, on

the other hand, gives an FNR that, although comparatively

worse than the case with the correct calibration (cf. Table 1),

still remains within functional range.

4.3. Addressing real-world challenges

When transferring the MEDIRL approach from toy

scenarios to full-scale, urban driving scenarios, additional

challenges emerge. The iterative nature of planning and

refining the cost model in the training process, as described

Fig. 12. Example cost maps based on miscalibrated data with MS

FCN (left), and the handcrafted cost function (right).

Table 2. Model performance on miscalibrated data. By applying

the MS FCN architecture we gain significantly more robustness

towards systematic bias in the sensor calibration in comparison

with a handcrafted cost function.

Metric NLL MHD FNR FPR

Manual CF 89.40 0.432 0.971 0.000

MS FCN 69.35 0.267 0.525 0.000

Fig. 13. Illustration of sparse feedback, showing a demonstration

trajectory on the spatial cost map around the vehicle, as well as the

region explored by the planning algorithm. Error feedback is only

created for the area surrounding sample trajectories.

in Section 3.3, leads to a principal focus on learning dis-

criminative features around highly visited states as depicted

in Figure 13. Features for terrains that are neither explored

by demonstration samples nor the planning step will not be

formed by backpropagation of error terms through the net-

work. The model has to generalise to describe these states

based on similarity to more commonly traversed areas,

resulting in inaccuracies, artefacts and noisy reward maps.
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Fig. 14. Schema for additional network pretraining, where the model learns to regress to a manual prior cost map. Subsequently the

network is fine-tuned to predict the reward under the MEDIRL framework.

While this does not represent any limitations for the toy

scenarios, it is of concern where feature representations for

similar places differ based on their position in state space,

as is the case in the dataset used in this work. The LIDAR

scan points in this setup will be spread sparser at greater

distance from the car, resulting in spatially variant repre-

sentations for the same objects in our environment. This

behaviour is illustrated in the cost maps in Figure 11 where

areas with sparser LIDAR which differ more significantly

from the traversed areas display more grainy and noisy cost

representations.

To illustrate the problem further, we consider the

following example. When training a model for image seg-

mentation, the objective creates feedback for each individ-

ual pixel. When training with a loss based on IRL on the

other hand, error terms will focus on the region around the

demonstration trajectories. These error terms are based on

states visited by the demonstration samples and the plan-

ning algorithm, which inherently focuses around sample

data. Our work addresses these shortcomings by pretraining

the network towards a dense human-provided prior, as visu-

alised in Figure 14, to learn richer feature representations

for untraversed areas and increase the network’s ability to

generalise.

These cost maps can be automatically generated from the

laser input data based on manually handcrafted features,

which enables us to utilise the availability of large amounts

of data without human labelling efforts. However, the prin-

cipal benefit is the ability to explore all features relevant to

generating the cost function, leading to better generalisa-

tion in areas with greater distance from the demonstration

trajectories.

To increase the performance of our approaches as path

planning cost maps, we add more common preprocessing

steps to the dataset from Section 4.2, such as normalising

the input data, and training on shorter trajectories that are

more representative for the motion primitives employed in

the final motion planning framework of closer to 10 m. For

the normalisation procedure we center each feature with

zero mean and unit standard variation. When performing

Table 3. Evaluation of cost functions for urban driving under

the negative log-likelihood (NLL) and modified Hausdorff dis-

tance (MHD) metrics. Lower numbers represent models that are

approximating human behaviour with higher precision.

Metric NLL MHD

Manual cost function 56.402 0.286

w/o pretraining 47.535 0.218

w pretraining 46.767 0.182

path planning, a threshold has to be determined to define

untraversable and unsafe terrain. To simplify this step we

normalise the output to range [0, 1] by applying a final sig-

moid activation function. Furthermore, we introduce early

stopping based on validation performance to increase gen-

eralisation and prevent overfitting as well as the complete

overriding of prior information from the weight initialisa-

tion. For this procedure we randomly separate 5% of our

training data as a validation set.

Utilising prior knowledge in this approach improves

accuracy for prediction and therefore imitation of human

driving behaviour as displayed in Table 3. However, its prin-

cipal gain lies in being able to improve the robustness and

spatial generalisation of the learned cost functions, lead-

ing to more accurate classification of traversable terrain.

The precision–recall curves for networks with and without

pretraining are depicted in Figure 15. A single point rep-

resents the manual cost function as it does not include a

threshold parameter. This approach is manually designed

to be conservative and enables us to operate at very good

precision. However, it falsely rejects much of the terrain

incorrectly as untraversable as described in Section 4.2.2.

In contrast, the learned cost functions find possible paths

in many situations where the manual cost function will get

stuck. The additional introduction of prior knowledge into

the training process achieves a significant gain in precision

compared with random initialisation. Hence, utilising this

knowledge is an important step towards robust application

of the learned cost maps.



1084 The International Journal of Robotics Research 36(10)

Fig. 15. Precision–recall (PR) curves for trajectory classification.

The manual cost function has high precision but low recall, mean-

ing that it is safe but conservative and will falsely classify a sig-

nificant number of feasible trajectories as untraversable. Applying

human priors in the pretraining step enables a significant gain in

precision towards the baseline. This method approaches the pre-

cision of the manual cost function while strongly exceeding it in

recall.

When explicitly handcrafting a cost function, corner-

cases, as displayed in Table 4, can represent relevant short-

comings. The handcrafted cost function as described in

Section 4.2 can lead to inaccuracies in the presence of

slopes, which can exceed the threshold and will be shown as

untraversable. Stairs, on the other hand, can still fit within

the same threshold, but present obstacles for any wheeled

vehicle as they cannot be traversed due to their disconti-

nuity. Furthermore, underpasses might incorrectly exceed

the height threshold for obstacles since scans from ceiling

and floor result in a high height range. Bollards that are

extended slightly too far will seem untraversable and areas

such as grass can look very similar in features to pathways

but should not be traversed.

The randomly initialised network already learns to repre-

sent the main obstacles and traversable areas, but it results

in some noisy areas and artificial obstacles. When ini-

tialised based on prior domain knowledge, the network

additionally learns to refine the representation and is signif-

icantly more robust. It learns to represent distinct obstacle

boundaries and displays fewer artefacts. This approach is

able to distinguish slopes from stairs and extends obstacle

boundaries more precisely as necessary for safe traversal as

seen in the respective cases in Table 4.

As additional safety benefit, we can define how far we

trust our perception systems by adapting the length of

demonstration trajectories. The learned cost functions show

untraversable terrain starting at about 13 m distance from

the vehicle position, which is the length of the demonstra-

tion trajectories. Since features in distant areas are only

traversed by the planning step and not demonstration sam-

ples in the training process, they will be classified as

untraversable with high probability.

We argue that without pretraining, the expressive power

of the network is employed to learn the very specific rep-

resentation focused around the demonstration trajectories

as this strongly influences the training objective. When we

instead pretrain the model to predict an existing cost map

and learn with more dense feedback for the whole environ-

ment, the remainder of the training process is able to better

capture some of the corner cases described previously. The

approach results in more distinct obstacle boundaries and

more robust cost maps as demonstrated in this section.

5. Discussion

We argue for the use of a high-capacity, parametric

approach to IRL using FCNs, in order to tractably approx-

imate the cost function in a complex real-world scenario

with maximum accuracy and constant-time operation.

In order to achieve a task of this complexity with man-

ually handcrafted features, one requires significant expert

knowledge of the application domain, sensory pipeline

and decision-making approach. Further, as demonstrated in

Section 4.2, some necessary features can be easily missed

in the preprocessing setup given the amount of variation in

domain-specific obstacles. In contrast, the spatial features

as represented by the filters of the FCN on the other hand

are inherently optimised for this task.

While non-parametric approaches such as GPIRL pos-

sess the capacity to learn complex non-linear cost func-

tions when given these hypothetically perfect features, but

do not exhibit constant-time behaviour and are rendered

intractable with the large amounts of required training data.

Additional benefits of the proposed approach include

robustness towards unknown, systematic noise, as exempli-

fied by miscalibration in Section 4.2.3. This capability does

not exist for approaches that rely on predetermined feature

representations, because this would require knowledge of

the applied noise when constructing features for the task.

As is common for systems that can affect their envi-

ronment, the vehicle can encounter a significantly differ-

ent sensor data distribution during test time. While IRL

already generalises better than direct imitation learning in

this case (Argall et al., 2009), the problem can be addition-

ally addressed by adapting a DAgger-like (Ross et al., 2010)

approach, where additional demonstration samples are col-

lected for environments that the system encounters in closed

loop.

While our model learns the spatial preferences underly-

ing human driving behaviour, the approach, in its current

form, does not address the velocity profiles alongside driven

paths as well as aspects of temporal consistency between

consecutive cost maps. This extension requires the process-

ing of sensor inputs across the extend trajectory instead of

focusing on a limited period around the start of each tra-

jectory, since the position of dynamic obstacles will change

during the traversal of a given trajectory. Both mentioned

challenges can be partially addressed on the model side

with extension towards recurrent network models as well

as temporal convolutions or as separate post-processing

step. Large-scale data collection efforts as currently pre-

dominant in the industrial sector can build the foundation

for training these more complex, high-capacity models to
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Table 4. Corner cases for the cost function. The images include views from the front facing camera module with the vehicle represented

as a grey rectangle driving towards the right side of each cost map. Obstacles are represented in blue, while yellow depicts traversable

terrain.

Scenario Manual cost function w/o pretraining w pretraining

Stairs

Bollards

Grass

Underpass

Slope
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expose the factors that determine temporal aspects of taken

trajectories.

6. Conclusions and future directions

We have developed a highly scalable approach to learn-

ing cost functions for autonomous mobile platforms from

large collections of demonstration samples for human driv-

ing. Common simulation benchmarks have been employed

to prove the efficacy of the algorithm and confirm that it can

approximate the given ground truth reward functions, with

convergence commensurate to current state-of-the-art IRL

approaches. We have demonstrated the principal benefits of

MEDIRL by applying it to an urban driving scenario based

on over 120 km of driving with over 25,000 demonstration

samples. The scale and complexity exceeds the reach of

existing approaches, either due to computational intractabil-

ity (such as for GPIRL) or limited representative capacity

(such as for linear IRL).

By employing an end-to-end method that maps directly

from low-level features to cost maps, the approach is able to

correct for systematic biases and learn task-optimal features

which help our method to perform well even in the pres-

ence of systematic noise as demonstrated in Section 4.2.3

by applying it to a miscalibrated dataset.

Additional challenges emerging from the application on

real-world sensor data in the large-scale evaluation such

as spatially sparse feedback are furthermore addressed by

incorporating human priors into a network pretraining step.

This allows the MEDIRL framework to perform parameter

fine-tuning based on an educated human prior cost map.

Additional benefits might be found in a semi-supervised

training procedure, exploiting both reconstruction and IRL-

based cost functions for the final training procedure as

well as utilising additional input representation samples in

the absence of driven trajectories. The approach can help

to address overfitting and increase generalisation perfor-

mance.
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